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Abstract. Occupancies in certain small, electrically insulated, electron systems have been
recently calculated. We show that the recursive formula derived from second quantization and
the simple expression obtained from combinatorics are identical.

As a consequence of the recent availability of electron traps and the tendency to fabricate
smaller and smaller electronic devices, there is a growing interest in the quantum statistics
of finite (i.e. small) electron systems. When the system may exchange energy (heat), but
not electrons, with a substrate, the celebrated Fermi–Dirac distribution only applies in the
large-temperature limit. Otherwise, significant discrepancies occur.

In this paper I restrict myself to evenly spaced one-electron energy levels,εk = kε, where
the energy spacingε is a constant,k ∈ Z, andk = 0 labels the top electron location atT = 0 K.
A single-electron spin-state is considered.

An expression for the level occupancyNk(q) of level k, whereq ≡ exp(−ε/kBT ) is the
Boltzmann factor, was apparently first obtained by Schonhammer and Meden [1] from second
quantization of the electron wavefunction. Occupancies are the coefficients of the Laurent
series ∑

k∈Z
Nk(q)z

k =
(∑
`>0

1

z`

)
F(z)F ( 1

z
)

F (1)2
(1)

where

F(z) = exp

(∑
n>1

zn

n(q−n − 1)

)
. (2)

Shortly thereafter, Arnaud and others [2] obtained a much simpler, explicit expression, by
direct enumeration of the microstates followed by averaging. Their result reads

Nk(q) =
∑
i>0

(−1)iq(i+1)k+ i(i+1)
2 . (3)

The purpose of this paper is to show that equations (1) and (3) coincide. The proof involves
elementary theorems onq-series. It thus appears that the second-quantization methods are often
superfluous. Our direct approach (see [2,3]) may be greatly generalized, e.g., to arbitrary level
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degeneracies, and is capable of solving problems that could be very difficult to solve by other
methods.

The first task is to expandF(z) defined in (2) in power series ofz. We have

F(z) = exp

(∑
n>0

(zq)n

n

∑
i>0

qni
)
= exp

(
−
∑
i>0

ln(1− zqi+1)

)
= 1

(zq)∞
=
∑
m>0

qm

(q)m
zm

(4)

where the notations

(a)∞ =
∏
i>0

(1− aqi) and (a)m = (a)∞
(aqm)∞

have been used. In particular,F(1) = 1/(q)∞. In the last step in (4), a theorem of Cauchy,
recalled in the appendix, has been employed.

Introducing the power series expansion ofF(z) into the right-hand side of (2), we obtain(∑
`>0

1

z`

)
F(z)F ( 1

z
)

F (1)2
= (q)2∞

∑
`>0

∑
m>0

∑
n>0

qm+nzm−n−`

(q)m(q)n
. (5)

Observe that the indexm in the above sum may run from any negative integer, because 1/(q)m
vanishes for negativem. Collecting terms of powerzk in the right-hand side of (5), the
occupancy of levelk reads

Nk(q) = (q)2∞
∑
`>0

∑
n>0

q2n+`+k

(q)n+`+k(q)n
.

A formula of Heine, also recalled in the appendix, enables us to simplify the above expression
to

Nk(q) =
∑
i>0

(−1)iq(i+1)k+ i(i+1)
2

which is equation (3).

Appendix

The two formulae employed in the main text, namely in equations (4) and (5), are special forms
of the two following identities, which are due to Cauchy and Heine, respectively. Proofs can
be found, e.g., in [4] (theorem 2.1 and corollary 2.3). For|q| < 1, |t | < 1, and|b| < 1,∑

n>0

(a)n

(q)n
tn = (at)∞

(t)∞

and ∑
n>0

(a)n(b)n

(q)n(c)n
tn = (b)∞(at)∞

(c)∞(t)∞

∑
n>0

(c/b)n(t)n

(q)n(at)n
bn.

Lettinga = 0 andb→ 0 in Heine’s formula, we obtain∑
n>0

tn

(q)n(c)n
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Therefore, ∑
n>0

q2n

(q)n(q`+k+1)n
= 1

(q`+k+1)∞(q2)∞

∑
n>0

(−1)n
(q2)n

(q)n
q
n(n−1)

2 +n(`+k+1)

= (q)`+k

(q)2∞

∑
n>0

(−1)n(1− qn+1)q
n(n+1)

2 +n(`+k).

Finally,

Nk(q) = (q)2∞
∑
`>0

q`+k

(q)`+k

∑
n>0

q2n

(q)n(q`+k+1)n
=
∑
n>0

(−1)nq
n(n+1)

2 +(n+1)k.
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